Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineered ; 5(6): 347-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482082

RESUMO

In our recent article "In vivo evolution of metabolic pathways by homeologous recombination in mitotic cells" we proposed a useful alternative to directed evolution methods that permits the generation of yeast cell libraries containing recombinant metabolic pathways from counterpart genes. The methodology was applied to generate single mosaic genes and intragenic mosaic pathways. We used flavonoid metabolism genes as a working model to assembly and express evolved pathways in DNA repair deficient cells. The present commentary revises the principles of gene and pathway mosaicism and explores the scope and perspectives of our results as an additional tool for synthetic biology.


Assuntos
Evolução Molecular Direcionada/métodos , Recombinação Homóloga , Engenharia Metabólica/métodos , Mitose/genética , Saccharomyces cerevisiae
2.
Metab Eng ; 23: 123-35, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24685654

RESUMO

We describe a rapid and highly efficient method for the assembly, recombination, targeted chromosomal integration and regulatable expression of mosaic metabolic pathways by homeologous recombination in DNA repair deficient yeast cells. We have assembled and recombined 23kb pathways containing all the genes encoding enzymes for the production of flavonoids, a group of plant secondary metabolites of nutritional and agricultural value. The mosaic genes of the pathways resulted from pair-wise recombination of two nonidentical (homeologous) wild-type genes. The recombination events occurred simultaneously in the cell. Correctly assembled mosaic gene clusters could only be observed in DNA repair deficient strains. Thus, libraries of intragenic mosaic pathways were generated. Randomly isolated clones were screened for their ability to produce flavonoids such as kaempferol, phloretin and galangin. Thus, the functionality of the recombinant pathways was proven. Additionally, significant higher concentrations of metabolites such as naringenin, pinocembrin and dihydrokaempferol were detected. Further analysis also revealed the production of different aromatic compounds such as styrene, hydroxystyrene, phloretic acid and other molecules. We show that the in vivo homeologous recombination strategy can generates libraries of intragenic mosaic pathways producing a high diversity of phenylpropanoid compounds.


Assuntos
Evolução Molecular Direcionada/métodos , Recombinação Homóloga , Engenharia Metabólica/métodos , Mitose/genética , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
J Biol Chem ; 283(37): 25332-25339, 2008 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-18562322

RESUMO

In Gram-positive bacteria, a large subfamily of dual ATP-binding cassette proteins confers acquired or intrinsic resistance to macrolide, lincosamide, and streptogramin antibiotics by a far from well understood mechanism. Here, we report the first biochemical characterization of one such protein, Vga(A), which is involved in streptogramin A (SgA) resistance among staphylococci. Vga(A) is composed of two nucleotide-binding domains (NBDs), separated by a charged linker, with a C-terminal extension and without identified transmembrane domains. Highly purified Vga(A) displays a strong ATPase activity (K(m) = 78 mum, V(m) = 6.8 min(-1)) that was hardly inhibited by orthovanadate. Using mutants of the conserved catalytic glutamate residues, the two NBDs of Vga(A) were shown to contribute unequally to the total ATPase activity, the mutation at NBD2 being more detrimental than the other. ATPase activity of both catalytic sites was essential for Vga(A) biological function because each single Glu mutant was unable to confer SgA resistance in the staphylococcal host. Of great interest, Vga(A) ATPase was specifically inhibited in a non-competitive manner by the SgA substrate, pristinamycin IIA (PIIA). A deletion of the last 18 amino acids of Vga(A) slightly affected the ATPase activity without modifying the PIIA inhibition values. In contrast, this deletion reduced 4-fold the levels of SgA resistance. Altogether, our results suggest a role for the C terminus in regulation of the SgA antibiotic resistance mechanism conferred by Vga(A) and demonstrate that this dual ATP-binding cassette protein interacts directly and specifically with PIIA, its cognate substrate.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Hidrólise , Staphylococcus aureus/metabolismo , Estreptogramina A/química , Estreptogramina A/farmacologia , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Antibacterianos , Resistência Microbiana a Medicamentos , Cinética , Modelos Químicos , Dados de Sequência Molecular , Mutação , Plasmídeos/metabolismo
4.
J Biol Chem ; 282(39): 28834-28842, 2007 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17640864

RESUMO

Guanine nucleotide exchange factors carrying a Sec7 domain (ArfGEFs) activate the small GTP-binding protein Arf, a major regulator of membrane remodeling and protein trafficking in eukaryotic cells. Only two of the seven subfamilies of ArfGEFs (GBF and BIG) are found in all eukaryotes. In addition to the Sec7 domain, which catalyzes GDP/GTP exchange on Arf, the GBF and BIG ArfGEFs have five common homology domains. Very little is known about the functions of these noncatalytic domains, but it is likely that they serve to integrate upstream signals that define the conditions of Arf activation. Here we describe interactions between two conserved domains upstream of the Sec7 domain (DCB and HUS) that determine the architecture of the N-terminal regions of the GBF and BIG ArfGEFs using a combination of biochemical, yeast two-hybrid, and cellular assays. Our data demonstrate a strong interaction between DCB domains within GBF1, BIG1, and BIG2 to maintain homodimers and an interaction between DCB and HUS domains within each homodimer. The DCB/HUS interaction is mediated by the HUS box, the most conserved motif in large ArfGEFs after the Sec7 domain. In support of the in vitro data, we show that both the DCB and the HUS domains are necessary for GBF1 dimerization in mammalian cells and that the DCB domain is essential for yeast viability. We propose that the dimeric DCB-HUS structural unit exists in all members of the GBF and BIG ArfGEF groups and in the related Mon2p family and probably serves an important regulatory role in Arf activation.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transdução de Sinais/fisiologia , Fatores de Ribosilação do ADP/genética , Motivos de Aminoácidos/fisiologia , Animais , Células COS , Chlorocebus aethiops , Dimerização , Ativação Enzimática/fisiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Estrutura Terciária de Proteína/fisiologia , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
5.
J Mol Biol ; 359(4): 940-9, 2006 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-16697012

RESUMO

Human multidrug resistance protein 1 (MRP1) is a membrane protein that belongs to the ATP-binding cassette (ABC) superfamily of transport proteins. MRP1 contributes to chemotherapy failure by exporting a wide range of anti-cancer drugs when over expressed in the plasma membrane of cells. Here, we report the first high-resolution crystal structure of human MRP1-NBD1. Drug efflux requires energy resulting from hydrolysis of ATP by nucleotide binding domains (NBDs). Contrary to the prokaryotic NBDs, the extremely low intrinsic ATPase activity of isolated MRP1-NBDs allowed us to obtain the structure of wild-type NBD1 in complex with Mg2+/ATP. The structure shows that MRP1-NBD1 adopts a canonical fold, but reveals an unexpected non-productive conformation of the catalytic site, providing an explanation for the low intrinsic ATPase activity of NBD1 and new hypotheses on the cooperativity of ATPase activity between NBD1 and NBD2 upon heterodimer formation.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Magnésio/metabolismo , Nucleotídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Ácido Aspártico/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Dimerização , Histidina/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
6.
Biochem J ; 391(Pt 3): 481-90, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16014004

RESUMO

MRP1 (multidrug-resistance-associated protein 1; also known as ABCC1) is a member of the human ABC (ATP-binding cassette) transporter superfamily that confers cell resistance to chemotherapeutic agents. Considering the structural and functional similarities to the other ABC proteins, the interaction between its two NBDs (nucleotide-binding domains), NBD1 (N-terminal NBD) and NBD2 (C-terminal NBD), is proposed to be essential for the regulation of the ATP-binding/ATP-hydrolysis cycle of MRP1. We were interested in the ability of recombinant NBD1 and NBD2 to interact with each other and to influence ATPase activity. We purified NBD1 (Asn642-Ser871) and NBD2 (Ser1286-Val1531) as soluble monomers under native conditions. We measured extremely low intrinsic ATPase activity of NBD1 (10(-5) s(-1)) and NBD2 (6x10(-6) s(-1)) and no increase in the ATP-hydrolysis rate could be detected in an NBD1+NBD2 mixture, with concentrations up to 200 microM. Despite the fact that both monomers bind ATP, no stable NBD1.NBD2 heterodimer could be isolated by gel-filtration chromatography or native-PAGE, but we observed some significant modifications of the heteronuclear single-quantum correlation NMR spectrum of 15N-NBD1 in the presence of NBD2. This apparent NBD1.NBD2 interaction only occurred in the presence of Mg2+ and ATP. Partial sequential assignment of the NBD1 backbone resonances shows that residue Gly771 of the LSGGQ sequence is involved in NBD1.NBD2 complex formation. This is the first NMR observation of a direct interaction between the ABC signature and the opposite NBD. Our study also reveals that the NBD1.NBD2 heterodimer of MRP1 is a transient complex. This labile interaction is not sufficient to induce an ATPase co-operativity of the NBDs and suggests that other structures are required for the ATPase activation mechanism.


Assuntos
Adenosina Trifosfatases/metabolismo , Glicina/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Dimerização , Regulação da Expressão Gênica , Glicina/genética , Células HL-60 , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes
7.
Biochem J ; 376(Pt 3): 749-56, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-12954082

RESUMO

Multidrug-resistance-associated protein 1 (MRP1/ABCC1) is a human ATP-binding cassette transporter that confers cell resistance to antitumour drugs. Its NBDs (nucleotide-binding domains) bind/hydrolyse ATP, a key step in the activation of MRP1 function. To relate its intrinsic functional features to the mechanism of action of the full-size transporter, we expressed the N-terminal NBD1 domain (Asn(642) to Ser(871)) in Escherichia coli. NBD1 was highly purified under native conditions and was characterized as a soluble monomer. (15)N-labelling allowed recording of the first two-dimensional NMR spectra of this domain. The NMR study showed that NBD1 was folded, and that Trp(653) was a key residue in the NBD1-ATP interaction. Thus, interaction of NBD1 with ATP/ADP was studied by intrinsic tryptophan fluorescence. The affinity for ATP and ADP were in the same range (K (d(ATP))=118 microM and K (d(ADP))=139 microM). Binding of nucleotides did not influence the monomeric state of NBD1. The ATPase activity of NBD1 was magnesium-dependent and very low [V (max) and K (m) values of 5x10(-5) pmol of ATP x (pmol NBD1)(-1) x s(-1) and 833 microM ATP respectively]. The present study suggests that NBD1 has a low contribution to the ATPase activity of full-length MRP1 and/or that this activity requires NBD1-NBD2 heterodimer formation.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Triptofano/metabolismo , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Células HL-60 , Humanos , Magnésio/fisiologia , Dados de Sequência Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Espectrometria de Fluorescência , Triptofano/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...